//Created by libAntimony v2.4 model puglisi_bers_2001_version01__environment(time_) // Variable initializations: time_ = ; end model puglisi_bers_2001_version01__membrane(V, R, T, F, time_, i_Na, i_Ca_L, i_Ca_T, i_Kr, i_Ks, i_NaCa, i_K1, i_Kp, i_p_Ca, i_Na_b, i_Ca_b, i_NaK, i_to, i_Cl_Ca) // Rate Rules: V' = (I_stim - (i_Na + i_Ca_L + i_Ca_T + i_Kr + i_Ks + i_NaCa + i_K1 + i_Kp + i_p_Ca + i_Na_b + i_Ca_b + i_NaK + i_to + i_Cl_Ca)) / C; // Variable initializations: V = -84.09; R = 8314.0; T = 310.0; F = 96845.0; C = 1.0; I_stim = -100.0; time_ = ; i_Na = ; i_Ca_L = ; i_Ca_T = ; i_Kr = ; i_Ks = ; i_NaCa = ; i_K1 = ; i_Kp = ; i_p_Ca = ; i_Na_b = ; i_Ca_b = ; i_NaK = ; i_to = ; i_Cl_Ca = ; end model puglisi_bers_2001_version01__fast_sodium_current_m_gate(m, V, time_) // Assignment Rules: alpha_m := (0.32 * (V + 47.13)) / (1.0 - exp(-0.1 * (V + 47.13))); beta_m := 0.08 * exp(- V / 11.0); // Rate Rules: m' = alpha_m * (1.0 - m) - beta_m * m; // Variable initializations: m = ; V = ; time_ = ; end model puglisi_bers_2001_version01__fast_sodium_current_h_gate(h, V, time_) // Assignment Rules: alpha_h := piecewise( 0.135 * exp((80.0 + V) / -6.8) , V < -40.0 , 0.0 ); beta_h := piecewise( 3.56 * exp(0.079 * V) + 310000.0 * exp(0.35 * V) , V < -40.0 , 1.0 / (0.13 * (1.0 + exp(-(V + 10.66) / 11.1))) ); // Rate Rules: h' = alpha_h * (1.0 - h) - beta_h * h; // Variable initializations: h = ; V = ; time_ = ; end model puglisi_bers_2001_version01__fast_sodium_current_j_gate(j, V, time_) // Assignment Rules: alpha_j := piecewise( (-127140.0 * exp(0.2444 * V) - 0.00003474 * exp(-0.04391 * V)) * ((V + 37.78) / (1.0 + exp(0.311 * (V + 79.23)))) , V < -40.0 , 0.0 ); beta_j := piecewise( (0.1212 * exp(-0.01052 * V)) / (1.0 + exp(-0.1378 * (V + 40.14))) , V < -40.0 , (0.3 * exp(-0.0000002535 * V)) / (1.0 + exp(-0.1 * (V + 32.0))) ); // Rate Rules: j' = alpha_j * (1.0 - j) - beta_j * j; // Variable initializations: j = ; V = ; time_ = ; end model puglisi_bers_2001_version01__fast_sodium_current(i_Na, E_Na, time_, V, m, h, j) // Sub-modules, and any changes to those submodules: fast_sodium_current_m_gate: puglisi_bers_2001_version01__fast_sodium_current_m_gate(m, V, time_); fast_sodium_current_h_gate: puglisi_bers_2001_version01__fast_sodium_current_h_gate(h, V, time_); fast_sodium_current_j_gate: puglisi_bers_2001_version01__fast_sodium_current_j_gate(j, V, time_); // Assignment Rules: i_Na := g_Na * power(m, 3.0) * h * j * (V - E_Na); // Variable initializations: E_Na = 70.54; g_Na = 8.0; end model puglisi_bers_2001_version01__L_type_Ca_channel_d_gate(d, V, time_) // Assignment Rules: alpha_d := d_infinity / tau_d; beta_d := (1.0 - d_infinity) / tau_d; d_infinity := 1.0 / (1.0 + exp(-((V + 10.0) / 6.24))); tau_d := d_infinity * ((1.0 - exp(-((V + 10.0) / 6.24))) / (0.035 * (V + 10.0))); // Rate Rules: d' = alpha_d * (1.0 - d) - beta_d * d; // Variable initializations: d = ; V = ; time_ = ; end model puglisi_bers_2001_version01__L_type_Ca_channel_f_gate(f, V, time_) // Assignment Rules: alpha_f := f_infinity / tau_f; beta_f := (1.0 - f_infinity) / tau_f; f_infinity := 1.0 / (1.0 + exp((V + 35.06) / 8.6)) + 0.6 / (1.0 + exp((50.0 - V) / 20.0)); tau_f := 1.0 / (0.0197 * exp(-power(0.0337 * (V + 10.0), 2.0)) + 0.02); // Rate Rules: f' = alpha_f * (1.0 - f) - beta_f * f; // Variable initializations: f = ; V = ; time_ = ; end model puglisi_bers_2001_version01__L_type_Ca_channel_f_Ca_gate(f_Ca, V, time_, Cai) // Assignment Rules: f_Ca := 1.0 / (1.0 + power(Cai / Km_Ca, 2.0)); // Variable initializations: Km_Ca = 0.6; V = ; time_ = ; Cai = ; end model puglisi_bers_2001_version01__L_type_Ca_channel(i_Ca_L, i_CaCa, i_CaK, i_CaNa, time_, V, Cai, R, T, F, Cao, Nao, Ko, Nai, Ki, d, f, f_Ca) // Sub-modules, and any changes to those submodules: L_type_Ca_channel_d_gate: puglisi_bers_2001_version01__L_type_Ca_channel_d_gate(d, V, time_); L_type_Ca_channel_f_gate: puglisi_bers_2001_version01__L_type_Ca_channel_f_gate(f, V, time_); L_type_Ca_channel_f_Ca_gate: puglisi_bers_2001_version01__L_type_Ca_channel_f_Ca_gate(f_Ca, V, time_, Cai); // Assignment Rules: i_Ca_L := i_CaCa + i_CaK + i_CaNa; i_CaCa := d * f * f_Ca * I_CaCa; i_CaK := d * f * f_Ca * I_CaK; i_CaNa := d * f * f_Ca * I_CaNa; I_CaCa := P_Ca * power(2.0, 2.0) * ((V * power(F, 2.0)) / (R * T)) * ((gamma_Cai * Cai * exp((2.0 * V * F) / (R * T)) - gamma_Cao * Cao) / (exp((2.0 * V * F) / (R * T)) - 1.0)); I_CaK := P_K * power(1.0, 2.0) * ((V * power(F, 2.0)) / (R * T)) * ((gamma_Ki * Ki * exp((1.0 * V * F) / (R * T)) - gamma_Ko * Ko) / (exp((1.0 * V * F) / (R * T)) - 1.0)); I_CaNa := P_Na * power(1.0, 2.0) * ((V * power(F, 2.0)) / (R * T)) * ((gamma_Nai * Nai * exp((1.0 * V * F) / (R * T)) - gamma_Nao * Nao) / (exp((1.0 * V * F) / (R * T)) - 1.0)); // Variable initializations: P_Ca = 0.00054; P_Na = 0.000000675; P_K = 0.000000193; gamma_Cai = 1.0; gamma_Cao = 0.34; gamma_Nai = 0.75; gamma_Nao = 0.75; gamma_Ki = 0.75; gamma_Ko = 0.75; R = ; T = ; F = ; Cao = ; Nao = ; Ko = ; Nai = ; Ki = ; end model puglisi_bers_2001_version01__T_type_Ca_channel_b_gate(b, time_, V) // Assignment Rules: b_infinity := 1.0 / (1.0 + exp(-(V + 48.0) / 6.1)); tau_b := 0.1 + 5.4 / (1.0 + exp((V + 100.0) / 33.0)); // Rate Rules: b' = (b_infinity - b) / tau_b; // Variable initializations: b = ; time_ = ; V = ; end model puglisi_bers_2001_version01__T_type_Ca_channel_g_gate(g, time_, V) // Assignment Rules: g_infinity := 1.0 / (1.0 + exp((V + 66.0) / 6.6)); tau_g := 8.0 + 32.0 / (1.0 + exp((V + 65.0) / 5.0)); // Rate Rules: g' = (g_infinity - g) / tau_g; // Variable initializations: g = ; time_ = ; V = ; end model puglisi_bers_2001_version01__T_type_Ca_channel(i_Ca_T, time_, V, Cai, Cao, R, T, F, b, g) // Sub-modules, and any changes to those submodules: T_type_Ca_channel_b_gate: puglisi_bers_2001_version01__T_type_Ca_channel_b_gate(b, time_, V); T_type_Ca_channel_g_gate: puglisi_bers_2001_version01__T_type_Ca_channel_g_gate(g, time_, V); // Assignment Rules: i_Ca_T := g_Ca_T * b * g * (V - E_Ca); E_Ca := ((R * T) / (2.0 * F)) * ln(Cao / Cai); // Variable initializations: g_Ca_T = 0.05; Cai = ; Cao = ; R = ; T = ; F = ; end model puglisi_bers_2001_version01__rapid_time_dependent_potassium_current_Xr_gate(Xr, V, time_) // Assignment Rules: Xr_infinity := 1.0 / (1.0 + exp(-(V + 50.0) / 7.5)); tau_Xr := 1.0 / ((0.00138 * (V + 7.0)) / (1.0 - exp(-0.123 * (V + 7.0))) + (0.00061 * (V + 10.0)) / exp((0.145 * (V + 10.0)) * 0.145 - 1.0)); // Rate Rules: Xr' = (Xr_infinity - Xr) / tau_Xr; // Variable initializations: Xr = ; V = ; time_ = ; end model puglisi_bers_2001_version01__rapid_time_dependent_potassium_current_Rr_gate(Rr, V, time_) // Assignment Rules: Rr := 1.0 / (1.0 + exp((V + 33.0) / 22.4)); // Variable initializations: V = ; time_ = ; end model puglisi_bers_2001_version01__rapid_time_dependent_potassium_current(i_Kr, time_, V, Ko, Ki, R, T, F, Xr, Rr) // Sub-modules, and any changes to those submodules: rapid_time_dependent_potassium_current_Xr_gate: puglisi_bers_2001_version01__rapid_time_dependent_potassium_current_Xr_gate(Xr, V, time_); rapid_time_dependent_potassium_current_Rr_gate: puglisi_bers_2001_version01__rapid_time_dependent_potassium_current_Rr_gate(Rr, V, time_); // Assignment Rules: i_Kr := g_Kr * Xr * Rr * (V - E_Kr); g_Kr := 0.02612 * root(Ko / 5.4); E_Kr := ((R * T) / F) * ln(Ko / Ki); // Variable initializations: Ko = ; Ki = ; R = ; T = ; F = ; end model puglisi_bers_2001_version01__slow_time_dependent_potassium_current_Xs_gate(Xs, V, time_) // Assignment Rules: tau_Xs := 1.0 / ((0.0000719 * (V + 30.0)) / (1.0 - exp(-0.148 * (V + 30.0))) + (0.000131 * (V + 30.0)) / (exp(0.0687 * (V + 30.0)) - 1.0)); Xs_infinity := 1.0 / (1.0 + exp(-(V + -1.5) / 16.7)); // Rate Rules: Xs' = (Xs_infinity - Xs) / tau_Xs; // Variable initializations: Xs = ; V = ; time_ = ; end model puglisi_bers_2001_version01__slow_time_dependent_potassium_current(i_Ks, time_, V, Ko, Ki, Nao, Nai, Cai, R, T, F, Xs) // Sub-modules, and any changes to those submodules: slow_time_dependent_potassium_current_Xs_gate: puglisi_bers_2001_version01__slow_time_dependent_potassium_current_Xs_gate(Xs, V, time_); // Assignment Rules: i_Ks := g_Ks * power(Xs, 2.0) * (V - E_Ks); g_Ks := (0.057 + 0.19) / (1.0 + exp((-7.2 + p_Ca) / 0.6)); E_Ks := ((R * T) / F) * ln((Ko + P_NaK * Nao) / (Ki + P_NaK * Nai)); p_Ca := -log(Cai) + 3.0; // Variable initializations: P_NaK = 0.01833; Ko = ; Ki = ; Nao = ; Nai = ; Cai = ; R = ; T = ; F = ; end model puglisi_bers_2001_version01__Na_Ca_exchanger(i_NaCa, time_, V, R, T, F, Nai, Nao, Cai, Cao, K_mCa) // Assignment Rules: i_NaCa := K_NaCa * (1.0 / (power(K_mNa, 3.0) + power(Nao, 3.0))) * (1.0 / (K_mCa + Cao)) * (1.0 / (1.0 + K_sat * exp((eta - 1.0) * V * (F / (R * T))))) * (exp(eta * V * (F / (R * T))) * power(Nai, 3.0) * Cao - exp((eta - 1.0) * V * (F / (R * T))) * power(Nao, 3.0) * Cai); // Variable initializations: K_NaCa = 2600.0; K_mNa = 87.5; K_sat = 0.1; eta = 0.35; time_ = ; V = ; R = ; T = ; F = ; Nai = ; Nao = ; Cai = ; Cao = ; K_mCa = ; end model puglisi_bers_2001_version01__time_independent_potassium_current_K1_gate(K1_infinity, V, time_, E_K1) // Assignment Rules: K1_infinity := alpha_K1 / (alpha_K1 + beta_K1); alpha_K1 := 1.02 / (1.0 + exp(0.2385 * ((V - E_K1) - 59.215))); beta_K1 := (0.49124 * exp(((V + 5.476) - E_K1) / 12.45) + exp((V - (E_K1 + 594.31)) / 16.2)) / (1.0 + exp(-0.5143 * (V - (E_K1 + 4.753)))); // Variable initializations: V = ; time_ = ; E_K1 = ; end model puglisi_bers_2001_version01__time_independent_potassium_current(i_K1, E_K1, time_, V, R, T, F, Ko, Ki, K1_infinity) // Sub-modules, and any changes to those submodules: time_independent_potassium_current_K1_gate: puglisi_bers_2001_version01__time_independent_potassium_current_K1_gate(K1_infinity, V, time_, E_K1); // Assignment Rules: i_K1 := g_K1 * K1_infinity * (V - E_K1); E_K1 := ((R * T) / F) * ln(Ko / Ki); g_K1 := 0.75 * root(Ko / 5.4); // Variable initializations: R = ; T = ; F = ; Ko = ; Ki = ; end model puglisi_bers_2001_version01__plateau_potassium_current(i_Kp, time_, V, E_K1) // Assignment Rules: i_Kp := g_Kp * Kp * (V - E_Kp); E_Kp := E_K1; Kp := 1.0 / (1.0 + exp((7.488 - V) / 5.98)); // Variable initializations: g_Kp = 0.008; time_ = ; V = ; E_K1 = ; end model puglisi_bers_2001_version01__sarcolemmal_calcium_pump(i_p_Ca, time_, Cai) // Assignment Rules: i_p_Ca := I_pCa * (Cai / (K_mpCa + Cai)); // Variable initializations: K_mpCa = 0.5; I_pCa = 1.15; time_ = ; Cai = ; end model puglisi_bers_2001_version01__sodium_background_current(i_Na_b, time_, V, E_Na) // Assignment Rules: i_Na_b := g_Nab * (V - E_NaN); E_NaN := E_Na; // Variable initializations: g_Nab = 0.00141; time_ = ; V = ; E_Na = ; end model puglisi_bers_2001_version01__calcium_background_current(i_Ca_b, time_, V, R, T, F, Cai, Cao) // Assignment Rules: i_Ca_b := g_Cab * (V - E_CaN); E_CaN := ((R * T) / (2.0 * F)) * ln(Cao / Cai); // Variable initializations: g_Cab = 0.003016; time_ = ; V = ; R = ; T = ; F = ; Cai = ; Cao = ; end model puglisi_bers_2001_version01__sodium_potassium_pump(i_NaK, time_, V, R, T, F, Nai, Nao, Ko) // Assignment Rules: i_NaK := I_NaK * f_NaK * (1.0 / (1.0 + root(power(K_mNai / Nai, 3.0)))) * (Ko / (Ko + K_mKo)); f_NaK := 1.0 / ((1.0 + 0.1245 * exp(-0.1 * ((V * F) / (R * T)))) + 0.0365 * sigma * exp(-((V * F) / (R * T)))); sigma := (1.0 / 7.0) * (exp(Nao / 67.3) - 1.0); // Variable initializations: I_NaK = ; K_mNai = 10.0; K_mKo = 1.5; time_ = ; V = ; R = ; T = ; F = ; Nai = ; Nao = ; Ko = ; end model puglisi_bers_2001_version01__calcium_activated_current(i_Cl_Ca, K_mCa, Cai, V, time_) // Assignment Rules: i_Cl_Ca := g_Cl * ((V - E_Cl) / (1.0 + K_mCa / Cai)); // Variable initializations: K_mCa = 0.10; g_Cl = 10.0; E_Cl = ; Cai = ; V = ; time_ = ; end model puglisi_bers_2001_version01__transient_outward_potassium_current_X_to_gate(X_to, V, time_) // Assignment Rules: alpha_X_to := 0.04561 * exp(0.03577 * V); beta_X_to := 0.0989 * exp(-0.06237 * V); // Variable initializations: X_to = 0.00003742; V = ; time_ = ; end model puglisi_bers_2001_version01__transient_outward_potassium_current_Y_to_gate(Y_to, V, time_) // Assignment Rules: alpha_Y_to := 0.005415 * exp(-((V + 33.5) / 5.0) / (1.0 + 0.051335 * exp(-((V + 33.5) / 5.0)))); beta_Y_to := 0.005415 * exp(((V + 33.5) / 5.0) / (1.0 + 0.051335 * exp((V + 33.5) / 5.0))); // Variable initializations: Y_to = 1.0; V = ; time_ = ; end model puglisi_bers_2001_version01__transient_outward_potassium_current(i_to, time_, V, X_to, Y_to) // Sub-modules, and any changes to those submodules: transient_outward_potassium_current_X_to_gate: puglisi_bers_2001_version01__transient_outward_potassium_current_X_to_gate(X_to, V, time_); transient_outward_potassium_current_Y_to_gate: puglisi_bers_2001_version01__transient_outward_potassium_current_Y_to_gate(Y_to, V, time_); // Assignment Rules: i_to := g_to * X_to * Y_to * (V - E_K); // Variable initializations: g_to = 0.060; E_K = ; end model puglisi_bers_2001_version01__Ca_buffers_in_the_myoplasm(time_, Cai) // Assignment Rules: TRPN_buff := TRPN_max * (Cai / (Cai + K_mTRPN)); CMDN_buff := CMDN_max * (Cai / (Cai + K_mCMDN)); // Variable initializations: K_mTRPN = 0.5; K_mCMDN = 2.38; TRPN_max = 70.0; CMDN_max = 50.0; time_ = ; Cai = ; end model puglisi_bers_2001_version01__calcium_fluxes_in_the_SR(i_rel, i_up, i_leak, i_tr, time_, Cai, Ca_JSR, Ca_NSR) // Assignment Rules: i_rel := G_rel * (Ca_JSR - Cai); i_up := I_up * (Cai / (Cai + K_mup)); i_leak := K_leak * Ca_NSR; i_tr := (Ca_NSR - Ca_JSR) / tau_tr; G_rel := G_rel_max * ((delta_Ca_i2 - delta_Ca_ith) / ((K_mrel + delta_Ca_i2) - delta_Ca_ith)) * (1.0 - exp(-(t / tau_on))) * exp(-(t / tau_off)); G_rel_max := piecewise( 0.0 , delta_Ca_i2 < delta_Ca_ith , 60.0 ); CSQN_buff := CSQN_max * (Ca_JSR / (Ca_JSR + K_mCSQN)); K_leak := I_up / Ca_NSR_max; // Variable initializations: tau_on = 2.0; tau_off = 2.0; tau_tr = 180.0; t = 0.0; K_mrel = 0.8; delta_Ca_i2 = ; delta_Ca_ith = 0.18; CSQN_max = 10.0; CSQN_th = 0.7; K_mCSQN = 0.8; K_mup = 0.92; I_up = 0.005; Ca_NSR_max = 0.15; time_ = ; Cai = ; Ca_JSR = ; Ca_NSR = ; end model puglisi_bers_2001_version01__ionic_concentrations(Nai, Nao, Cai, Cao, Ki, Ko, Ca_JSR, Ca_NSR, time_, F, i_Na, i_CaNa, i_Na_b, i_NaCa, i_NaK, i_CaCa, i_Ca_T, i_CaK, i_p_Ca, i_Ca_b, i_Kr, i_Ks, i_K1, i_Kp, i_to, i_tr, i_rel, i_leak, i_up) // Rate Rules: Nai' = -(i_Na + i_CaNa + i_Na_b + i_NaCa * 3.0 + i_NaK * 3.0) * (A_cap / (V_myo * F)); Cai' = ((i_CaCa + i_p_Ca + i_Ca_b + i_Ca_T) - i_NaCa) * (A_cap / (2.0 * V_myo * F)) + i_rel * (V_JSR / V_myo) + (i_leak - i_up) * (V_NSR / V_myo); Ki' = -(i_CaK + i_Kr + i_Ks + i_K1 + i_Kp + i_to + -(i_NaK * 2.0)) * (A_cap / (V_myo * F)); Ko' = (i_CaK + i_Kr + i_Ks + i_K1 + i_Kp + i_to + -(i_NaK * 2.0)) * (A_cap / (V_cleft * F)); Ca_JSR' = -(i_rel - i_tr * (V_NSR / V_JSR)); Ca_NSR' = -((i_leak + i_tr) - i_up); Ca_foot' = - i_CaCa * (A_cap / (2.0 * V_myo * F)) * R_A_V; // Variable initializations: Nai = 10.0; Nao = 140.0; Cai = 0.12; Cao = 1.8; Ki = 145.0; Ko = 5.4; Ca_JSR = ; Ca_NSR = 15.0; Ca_foot = ; A_cap = 0.000153; R_A_V = ; V_myo = ; delta_Ca = ; delta_Ca_JSR = ; V_cleft = ; V_JSR = ; V_NSR = ; time_ = ; F = ; i_Na = ; i_CaNa = ; i_Na_b = ; i_NaCa = ; i_NaK = ; i_CaCa = ; i_Ca_T = ; i_CaK = ; i_p_Ca = ; i_Ca_b = ; i_Kr = ; i_Ks = ; i_K1 = ; i_Kp = ; i_to = ; i_tr = ; i_rel = ; i_leak = ; i_up = ; end model *puglisi_bers_2001_version01____main() // Sub-modules, and any changes to those submodules: environment: puglisi_bers_2001_version01__environment(time_); membrane: puglisi_bers_2001_version01__membrane(V, R, T, F, time_, i_Na, i_Ca_L, i_Ca_T, i_Kr, i_Ks, i_NaCa, i_K1, i_Kp, i_p_Ca, i_Na_b, i_Ca_b, i_NaK, i_to, i_Cl_Ca); fast_sodium_current: puglisi_bers_2001_version01__fast_sodium_current(i_Na, E_Na, time_, V, m, h, j); L_type_Ca_channel: puglisi_bers_2001_version01__L_type_Ca_channel(i_Ca_L, i_CaCa, i_CaK, i_CaNa, time_, V, Cai, R, T, F, Cao, Nao, Ko, Nai, Ki, d, f, f_Ca); T_type_Ca_channel: puglisi_bers_2001_version01__T_type_Ca_channel(i_Ca_T, time_, V, Cai, Cao, R, T, F, b, g); rapid_time_dependent_potassium_current: puglisi_bers_2001_version01__rapid_time_dependent_potassium_current(i_Kr, time_, V, Ko, Ki, R, T, F, Xr, Rr); slow_time_dependent_potassium_current: puglisi_bers_2001_version01__slow_time_dependent_potassium_current(i_Ks, time_, V, Ko, Ki, Nao, Nai, Cai, R, T, F, Xs); Na_Ca_exchanger: puglisi_bers_2001_version01__Na_Ca_exchanger(i_NaCa, time_, V, R, T, F, Nai, Nao, Cai, Cao, K_mCa); time_independent_potassium_current: puglisi_bers_2001_version01__time_independent_potassium_current(i_K1, E_K1, time_, V, R, T, F, Ko, Ki, K1_infinity); plateau_potassium_current: puglisi_bers_2001_version01__plateau_potassium_current(i_Kp, time_, V, E_K1); sarcolemmal_calcium_pump: puglisi_bers_2001_version01__sarcolemmal_calcium_pump(i_p_Ca, time_, Cai); sodium_background_current: puglisi_bers_2001_version01__sodium_background_current(i_Na_b, time_, V, E_Na); calcium_background_current: puglisi_bers_2001_version01__calcium_background_current(i_Ca_b, time_, V, R, T, F, Cai, Cao); sodium_potassium_pump: puglisi_bers_2001_version01__sodium_potassium_pump(i_NaK, time_, V, R, T, F, Nai, Nao, Ko); calcium_activated_current: puglisi_bers_2001_version01__calcium_activated_current(i_Cl_Ca, K_mCa, Cai, V, time_); transient_outward_potassium_current: puglisi_bers_2001_version01__transient_outward_potassium_current(i_to, time_, V, X_to, Y_to); Ca_buffers_in_the_myoplasm: puglisi_bers_2001_version01__Ca_buffers_in_the_myoplasm(time_, Cai); calcium_fluxes_in_the_SR: puglisi_bers_2001_version01__calcium_fluxes_in_the_SR(i_rel, i_up, i_leak, i_tr, time_, Cai, Ca_JSR, Ca_NSR); ionic_concentrations: puglisi_bers_2001_version01__ionic_concentrations(Nai, Nao, Cai, Cao, Ki, Ko, Ca_JSR, Ca_NSR, time_, F, i_Na, i_CaNa, i_Na_b, i_NaCa, i_NaK, i_CaCa, i_Ca_T, i_CaK, i_p_Ca, i_Ca_b, i_Kr, i_Ks, i_K1, i_Kp, i_to, i_tr, i_rel, i_leak, i_up); end