// Created by libAntimony v2.8.0 model *Fridlyand2003_Ca_flux_pancreatic_cells() // Compartments and Species: compartment Cytoplasm, ER; species Ca_cyt in Cytoplasm, Ca_er in ER, IP3_cyt in Cytoplasm, Na_cyt in Cytoplasm; species ATP_cyt in Cytoplasm, $ADP_cyt in Cytoplasm; // Assignment Rules: ADP_cyt := 4000 - ATP_cyt; n_infinity := 1/(1 + exp((Vn - V)/Sn)); tau_n := c/(exp((V - Vtau)/a) + exp((Vtau - V)/b)); I_Vca := gmvca*pvca*(V - Vca); I_CaPump := (Pmcap*Ca_cyt^2)/(Kcap^2 + Ca_cyt^2); I_NaCa := (gnaca*Ca_cyt^5*(V - Vnaca))/(Ca_cyt^5 + Knaca^5); I_CRAN := f_CRAN*p_CRAN*(V - Vna); I_Na := gmna*pna*(V - Vna); I_NaK := (Pnak*(F1*f_2*f_3*F4*F5*f_6 - b_1*B2*B3*B4*b_5*B6))/D; I_KDr := gmKDr*n*(V - Vk); I_KCa := gmkca*f_Ca*(V - Vk); I_KATP := gmkatp*Okatp*(V - Vk); Vca := TV/2*ln(Ca_ec/Ca_cyt); Vk := TV*ln(K_ec/K_cyt); Vna := TV*ln(Na_ec/Na_cyt); Vnaca := TV*(3*ln(Na_ec/Na_cyt) - ln(Ca_ec/Ca_cyt)); pvca := 1/(1 + exp((Vcah - V)/Kcah)); f_CRAN := -gm_CRAN/(1 + exp((Ca_er - Kcar)/3)); p_CRAN := V - V_CRAN; pna := 1/(1 + exp((104 + V)/8)); f_5 := f5_ast*exp(V/(2*TV)); b_5 := b5_ast*exp(-V/(2*TV)); F1 := f_1*Na_cyt^3; F4 := f_4*K_ec^2; F5 := f_5*ATP_cyt; B2 := b_2*ADP_cyt; B3 := b_3*Na_ec^3; B4 := b_4*P; B6 := b_6*Ksup^2; D := f_2*f_3*F4*F5*f_6 + b_1*f_3*F4*F5*f_6 + b_1*B2*F4*F5*f_6 + b_1*B2*B3*F5*f_6 + b_1*B2*B3*B4*f_6 + b_1*B2*B3*B4*b_5; f_Ca := Ca_cyt^4/(Ca_cyt^4 + Kkca^4); Okatp := (0.08*(1 + 0.33*(ADP_cyt/Kdd)) + 0.89*(0.165*(ADP_cyt/Kdd))^2)/((1 + 0.165*(ADP_cyt/Kdd))^2*(1 + 0.135*(ADP_cyt/Ktd) + 0.05*(ATP_cyt/Ktt))); Jerp := (Pcaer*Ca_cyt^2)/(Ca_cyt^2 + Kcarp^2); O_infinity := (Ca_cyt*IP3_cyt^3)/((Ca_cyt + Krca)*(IP3_cyt^3 + Kip3^3)); Jout := (Pleak + Pip3*O_infinity)*(Ca_er - Ca_cyt); // Rate Rules: n' = (n_infinity - n)/tau_n; V' = (0 - (I_Vca + I_CaPump + I_NaCa + I_CRAN + I_Na + I_NaK + I_KDr + I_KCa + I_KATP))/Cm; // Reactions: Calcium_cyt_Ivca: => Ca_cyt; (fi*-I_Vca)/(2*F); Calcium_cyt_Inaca: => Ca_cyt; (fi*2*I_NaCa)/(2*F); Calcium_cyt_Icapump: Ca_cyt => ; (fi*2*I_CaPump)/(2*F); Calcium_cyt_Jerp: 0.01Ca_cyt => 0.03Ca_er; Cytoplasm*Jerp; Calcium_cyt_Jout: 0.03Ca_er => 0.01Ca_cyt; Jout; Calcium_cyt_sequestration: Ca_cyt => ; Cytoplasm*ksg*Ca_cyt; IP3_synthesis: => IP3_cyt; (Cytoplasm*kip*Ca_cyt^2)/(Ca_cyt^2 + Kipca^2); IP3_degradation: IP3_cyt => ; Cytoplasm*kdip*IP3_cyt; Na_Inaca: Na_cyt => ; (3*I_NaCa)/F; Na_Inak: Na_cyt => ; (3*I_NaK)/F; Na_Ina: => Na_cyt; -I_Na/F; Na_Icran: => Na_cyt; -I_CRAN/F; ATP_production: => ATP_cyt; Cytoplasm*kadp*ADP_cyt; ATP_NaKATPase: ATP_cyt => ; I_NaK/F; ATP_Capump: ATP_cyt => ; I_CaPump/F; ATP_Jerp: ATP_cyt => ; (Cytoplasm*Jerp)/2; ATP_Ca_dependent_consumption: ATP_cyt => ; Cytoplasm*katpca*Ca_cyt*ATP_cyt; ATP_consumption: ATP_cyt => ; Cytoplasm*katp*ATP_cyt; // Species initializations: Ca_cyt = 0.085; Ca_er = 22.8; IP3_cyt = 0.33; Na_cyt = 9858; ATP_cyt = 932.1; // Compartment initializations: Cytoplasm = 7.64e-013; ER = 2.8e-013; // Variable initializations: n = 0.00123; n_infinity has dimensionless; tau_n has time_unit; V = -60.9; V has millivolt; I_Vca has femtoampere; I_CaPump has femtoampere; I_NaCa has femtoampere; I_CRAN has femtoampere; I_Na has femtoampere; I_NaK has femtoampere; I_KDr has femtoampere; I_KCa has femtoampere; I_KATP has femtoampere; Cm = 6158; Cm has femtofarad; Vca has millivolt; TV = 26.73; TV has millivolt; Ca_ec = 2600; Ca_ec has micromole_per_litre; Vk has millivolt; K_ec = 8000; K_ec has micromole_per_litre; K_cyt = 132400; K_cyt has micromole_per_litre; Vna has millivolt; Na_ec = 140000; Na_ec has micromole_per_litre; Vnaca has millivolt; Vcah = -19; Vcah has millivolt; Kcah = 9.5; Kcah has millivolt; gm_CRAN = 0.7; gm_CRAN has picosiemens_per_millivolt; Kcar = 200; Kcar has micromole_per_litre; p_CRAN has millivolt; V_CRAN = 0; V_CRAN has millivolt; pna has dimensionless; f5_ast = 0.002; f5_ast has per_microM_per_millisecond; b5_ast = 0.03; b5_ast has per_millisecond; f_1 = 2.5e-010; f_1 has per_microMcube_per_millisecond; f_4 = 1.5e-008; f_4 has per_microMsquare_per_millisecond; b_2 = 0.0001; b_2 has per_microM_per_millisecond; b_3 = 1.72e-017; b_3 has per_microMcube_per_millisecond; b_4 = 0.0002; b_4 has per_microM_per_millisecond; P = 4950; P has micromole_per_litre; b_6 = 6e-007; b_6 has per_microM_per_millisecond; Ksup = 150400; Ksup has micromole_per_litre; f_2 = 10; f_2 has per_millisecond; f_3 = 0.172; f_3 has per_millisecond; f_6 = 11.5; f_6 has per_millisecond; b_1 = 100; b_1 has per_millisecond; f_Ca has dimensionless; Kkca = 0.1; Kkca has micromole_per_litre; Okatp has dimensionless; Kdd = 17; Kdd has micromole_per_litre; Ktd = 26; Ktd has micromole_per_litre; Ktt = 1; Ktt has micromole_per_litre; Vn = -14; Vn has millivolt; Sn = 7; Sn has millivolt; c = 20; c has time_unit; Vtau = -75; Vtau has millivolt; a = 65; a has millivolt; b = 20; b has millivolt; gmvca = 770; gmvca has picosiemens; Pmcap = 2000; Pmcap has femtoampere; Kcap = 0.1; Kcap has micromole_per_litre; gnaca = 271; gnaca has picosiemens; Knaca = 0.75; Knaca has micromole_per_litre; gmna = 1200; gmna has picosiemens; Pnak = 600; Pnak has femtoampere; gmKDr = 3000; gmKDr has picosiemens; gmkca = 130; gmkca has picosiemens; gmkatp = 24000; gmkatp has picosiemens; Jerp has microM_per_millisecond; Pcaer = 0.105; Pcaer has microM_per_millisecond; Kcarp = 0.5; Kcarp has micromole_per_litre; O_infinity has dimensionless; Krca = 0.077; Krca has micromole_per_litre; Kip3 = 3.2; Kip3 has micromole_per_litre; Jout has micromole_per_millisecond; Pleak = 1e-016; Pleak has litres_per_millisecond; Pip3 = 1.2e-015; Pip3 has litres_per_millisecond; fi = 0.01; fi has dimensionless; F = 9.6485e+016; F has fA_msec_per_micromole; ksg = 0.0001; ksg has per_millisecond; fer = 0.03; fer has dimensionless; kip = 0.0003; kip has microM_per_millisecond; Kipca = 0.4; Kipca has micromole_per_litre; kdip = 4e-005; kdip has per_millisecond; kadp = 0.00037; kadp has per_millisecond; katpca = 5e-005; katpca has per_microM_per_millisecond; katp = 5e-005; katp has per_millisecond; // Other declarations: var n, n_infinity, tau_n, V, I_Vca, I_CaPump, I_NaCa, I_CRAN, I_Na, I_NaK; var I_KDr, I_KCa, I_KATP, Vca, Vk, Vna, Vnaca, pvca, f_CRAN, p_CRAN, pna; var f_5, b_5, F1, F4, F5, B2, B3, B4, B6, D, f_Ca, Okatp, Jerp, Pcaer, O_infinity; var Jout; const Cytoplasm, ER, Cm, TV, Ca_ec, K_ec, K_cyt, Na_ec, Vcah, Kcah, gm_CRAN; const Kcar, V_CRAN, f5_ast, b5_ast, f_1, f_4, b_2, b_3, b_4, P, b_6, Ksup; const f_2, f_3, f_6, b_1, Kkca, Kdd, Ktd, Ktt, Vn, Sn, c, Vtau, a, b, gmvca; const Pmcap, Kcap, gnaca, Knaca, gmna, Pnak, gmKDr, gmkca, gmkatp, Kcarp; const Krca, Kip3, Pleak, Pip3, fi, F, ksg, fer, kip, Kipca, kdip, kadp; const katpca, katp; // Unit definitions: unit substance = 1e-6 mole; unit time_unit = 1e-3 second; unit millivolt = 1e-3 volt; unit femtoampere = 1e-15 ampere; unit micromole_per_litre = 1e-6 mole / litre; unit picosiemens = 1e-12 siemens; unit femtofarad = 1e-15 farad; unit per_millisecond = 1 / 1e-3 second; unit picosiemens_per_millivolt = 1e-12 siemens / 1e-3 volt; unit micromole_per_millisecond = 1e-6 mole / 1e-3 second; unit microM_per_millisecond = 1e-6 mole / (1e-3 second * litre); unit litres_per_millisecond = litre / 1e-3 second; unit per_microM_per_millisecond = litre / (1e-6 mole * 1e-3 second); unit per_microMcube_per_millisecond = litre^3 / ((1e-6 mole)^3 * 1e-3 second); unit per_microMsquare_per_millisecond = litre^2 / ((1e-6 mole)^2 * 1e-3 second); unit per_microM = litre / 1e-6 mole; unit fA_msec_per_micromole = 1e-15 ampere * 1e-3 second / 1e-6 mole; // Display Names: substance is "Micromole"; time_unit is "milliseconds"; millivolt is "Voltage"; femtoampere is "Current"; micromole_per_litre is "Concentration"; picosiemens is "Conductance"; femtofarad is "Capacitance"; per_millisecond is "Time inverse"; picosiemens_per_millivolt is "Conductance coefficient"; micromole_per_millisecond is "amount per time"; microM_per_millisecond is "concentration per time"; litres_per_millisecond is "volume per time"; per_microM_per_millisecond is "per concentration per time"; per_microMcube_per_millisecond is "per concentration cubed per time"; per_microMsquare_per_millisecond is "per Concentration square per time"; per_microM is "per concentration"; fA_msec_per_micromole is "Faraday constant"; Cytoplasm is "cytoplasm"; ER is "endoplasmic reticulum"; Ca_cyt is "Cytosolic Calcium"; Ca_er is "ER Calcium"; IP3_cyt is "Cytosolic IP3"; Na_cyt is "Cytosolic Sodium"; ATP_cyt is "Cytosolic ATP"; ADP_cyt is "Cytosolic ADP"; F is "Faraday's constant"; kip is "IP3 production rate constant"; Kipca is "half activation cytosolic Ca"; kdip is "IP3 degradation rate constant"; kadp is "ATP production rate constant"; katpca is "Ca dependent ATP consumption"; katp is "Rate constant of ATP consumption"; end