
Antimony
A human-readable,

human-writable,

model definition language

v2.8, October, 2015

Documentation
by Lucian Smith

Table of contents

 Introduction

 What's New

 Species and Reactions

 Modules

o Module conversion factors

o Submodel deletions

 Constant and variable symbols

 Compartments

 Events

 Assignment Rules

 Rate Rules

 Display Names

 Comments

 Units

 DNA Strands

 Interactions

 Function Definitions

 Other files

 Importing and Exporting Antimony Models

 Appendix: Converting between SBML and Antimony

Introduction

Since the advent of SBML (the Systems Biology Markup Language) computer models of

biological systems have been able to be transferred easily between different labs and different

computer programs without loss of specificity. But SBML was not designed to be readable or

writable by humans, only by computer programs, so other programs have sprung up to allow

users to more easily create the models they need. Many of these programs are GUI-based, and

allow drag-and-drop editing of species and reactions, such as JDesigner and TinkerCell. A few,

like Jarnac, take a text-based approach, and allow the creation of models in a text editor. This has

the advantage of being faster, more readily cross-platform, and readable by others without

translation. Antimony (so named because the chemical symbol of the element is 'Sb') was

designed as a successor to Jarnac's model definition language, with some new features that mesh

with newer elements of SBML, some new features we feel will be generally applicable, and

some new features that we hope will facilitate the creation of genetic networks in particular. A

programming library 'libAntimony' was developed in tandem with the language to allow

computer translation of Antimony-formatted models into SBML and other formats used by other

computer programs. The basic features of Antimony include the ability to:

 Simply define species, reactions, compartments, events, and other elements of a

biological model.

 Package and re-use models as modules with defined or implied interfaces, and

 Create 'DNA strands' whose elements can pass reaction rates to downstream elements,

and inherit and modify reaction rates from upstream elements.

What's New

In the 2.7.1 release of Antimony, species marked ‘hasOnlySubstanceUnits=true’ in SBML now

have a corresponding definition in Antimony: ‘species substanceOnly S1, S2’.

In addition, Antimony now supports the SBML ‘Flux Balance Constraints’ package (version 1),

as well as constraints in general.

In the 2.7 release of Antimony, QTAntimony got several new improvements, including displayed

line numbers, find/replace, and a ‘go to line’ option. A few new syntaxes were also added,

including the ability to concisely define elements plus their assignment rules (‘species S1 in C :=

3+p’), and to define submodules with implied parameters (‘A: mod1(1,2)’).

In the 2.6 release of Antimony, some features of hierarchical translation (deletions in particular)

were made more robust, and a number of built-in distribution functions were added, which are

translated to SBML using the ‘distributions’ package, as well as using custom annotations

In the 2.5 release of Antimony, translation of Antimony concepts to and from the Hierarchical

Model Composition package was developed further to be much more robust, and a new test

system was added to ensure that Antimony's 'flattening' routine (which exports plain SBML)

matches libSBML's flattening routine.

http://sbw-app.org/jdesigner/
http://www.tinkercell.com/
http://sbw-app.org/jarnac/
http://antimony.sourceforge.net/
http://en.wikipedia.org/wiki/Antimony
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/comp
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/comp

In the 2.4 release of Antimony, use of the Hierarchical Model Composition package constructs in

the SBML translation became standard, due to the package being fully accepted by the SBML

community.

In the 2.2/2.3 release of Antimony, units, conversion factors, and deletions were added.

In the 2.1 version of Antimony, the 'import' handling became much more robust, and it became
additionally possible to export hierarchical models using the Hierarchical Model Composition

package constructs for SBML level 3.

In the 2.0 version of Antimony, it became possible to export models as CellML. This requires the

use of the CellML API, which is now available as an SDK. Hierarchical models are exported

using CellML's hierarchy, translated to accommodate their 'black box' requirements.

Species and Reactions

The simplest Antimony file may simply have a list of reactions containing species, along with

some initializations. Reactions are written as two lists of species, separated by a '->', and
followed by a semicolon:

 S1 + E -> ES;

Optionally, you may provide a reaction rate for the reaction by including a mathematical

expression after the semicolon, followed by another semicolon:

 S1 + E -> ES; k1*k2*S1*E - k2*ES;

You may also give the reaction a name by prepending the name followed by a colon:

 J0: S1 + E -> ES; k1*k2*S1*E - k2*ES;

The same effect can be achieved by setting the reaction rate separately, by assigning the reaction

rate to the reaction name with an '=':

 J0: S1 + E -> ES;

 J0 = k1*k2*S1*E - k2*ES;

You may even define them in the opposite order-they are all ways of saying the same thing. If

you want, you can define a reaction to be irreversible by using '=>' instead of '->':

 J0: S1 + E => ES;

However, if you additionally provide a reaction rate, that rate is not checked to ensure that it is

compatible with an irreversible reaction.

At this point, Antimony will make several assumptions about your model. It will assume (and

require) that all symbols that appear in the reaction itself are species. Any symbol that appears

elsewhere that is not used or defined as a species is 'undefined'; 'undefined' symbols may later

be declared or used as species or as 'formulas', Antimony's term for constants and packaged

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/comp
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/comp

equations like SBML's assignment rules. In the above example, k1 and k2 are (thus far)

undefined symbols, which may be assigned straightforwardly:

 J0: S1 + E -> ES; k1*k2*S1*E - k2*ES;

 k1 = 3;

 k2 = 1.4;

More complicated expressions are also allowed, as are the creation of symbols which exist only

to simplify or clarify other expressions:

 pH = 7;

 k3 = -log10(pH);

The initial concentrations of species are defined in exactly the same way as formulas, and may

be just as complex (or simple):

 S1 = 2;

 E = 3;

 ES = S1 + E;

Order for any of the above (and in general in Antimony) does not matter at all: you may use a

symbol before defining it, or define it before using it. As long as you do not use the same symbol

in an incompatible context (such as using the same name as a reaction and a species), your

resulting model will still be valid. Antimony files written by libAntimony will adhere to a

standard format of defining symbols, but this is not required. A complete (if simple) model

 J0: S1 + E -> ES; k1*k2*S1*E - k2*ES;

 k1 = 3;

 k2 = 1.4;

 S1 = 30.4;

 E = 1.2;

 ES = 2.1;

Modules

Antimony input files may define several different models, and may use previously-defined

models as parts of newly-defined models. Each different model is known as a 'module', and is

minimally defined by putting the keyword 'model' (or 'module', if you like) and the name you
want to give the module at the beginning of the model definitions you wish to encapsulate, and

putting the keyword 'end' at the end:

model example

 S + E -> ES;

end

After this module is defined, it can be used as a part of another model (this is the one time that

order matters in Antimony). To import a module into another module, simply use the name of the

module, followed by parentheses:

model example

 S + E -> ES;

end

model example2

 example();

end

This is usually not very helpful in and of itself-you'll likely want to give the submodule a name

so you can refer to the things inside it. To do this, prepend a name followed by a colon:

model example2

 A: example();

end

Now, you can modify or define elements in the submodule by referring to symbols in the

submodule by name, prepended with the name you've given the module, followed by a '.':

model example2

 A: example();

 A.S = 3;

end

This results in a model with a single reaction (A.S + A.E -> A.ES) and a single initial condition

(A.S = 3).

You may also import multiple copies of modules, and modules that themselves contain

submodules:

model example3

 A: example();

 B: example();

 C: example2();

end

This would result in a model with three reactions and a single initial condition.

 A.S + A.E -> A.ES

 B.S + B.E -> B.ES

 C.A.S + C.A.E -> C.A.ES

 C.A.S = 3;

You can also use the species defined in submodules in new reactions:

model example4

 A: example();

 A.S -> ; kdeg*A.S;

end

When combining multiple submodules, you can also 'attach' them to each other by declaring that

a species in one submodule is the same species as is found in a different submodule by using the

'is' keyword ("A.S is B.S"). For example, let's say that we have a species which is known to bind
reversibly to two different species. You could set this up as the following:

model side_reaction

 J0: S + E -> SE; k1*k2*S*E - k2*ES;

 S = 5;

 E = 3;

 SE = E+S;

 k1 = 1.2;

 k2 = 0.4;

end

model full_reaction

 A: side_reaction();

 B: side_reaction();

 A.S is B.S;

end

If you wanted, you could give the identical species a new name to more easily use it in the

'full_reaction' module:

model full_reaction

 var species S;

 A: side_reaction();

 B: side_reaction()

 A.S is S;

 B.S is S;

end

In this system, 'S' is involved in two reversible reactions with exactly the same reaction kinetics
and initial concentrations. Let's now say the reaction rate of the second side-reaction takes the

same form, but that the kinetics are twice as fast, and the starting conditions are different:

model full_reaction

 var species S;

 A: side_reaction();

 A.S is S;

 B: side_reaction();

 B.S is S;

 B.k1 = 2.4;

 B.k2 = 0.8;

 B.E = 10;

end

Note that since we defined the initial concentration of 'SE' as 'S + E', B.SE will now have a
different initial concentration, since B.E has been changed.

Finally, we add a third side reaction, one in which S binds irreversibly, and where the complex it

forms degrades. We'll need a new reaction rate, and a whole new reaction as well:

model full_reaction

 var species S;

 A: side_reaction();

 A.S is S;

 B: side_reaction();

 B.S is S;

 B.k1 = 2.4;

 B.k2 = 0.8;

 B.E = 10;

 C: side_reaction();

 C.S is S;

 C.J0 = C.k1*C.k2*S*C.E

 J3: C.SE -> ; C.SE*k3;

 k3 = 0.02;

end

Note that defining the reaction rate of C.J0 used the symbol 'S'; exactly the same result would be

obtained if we had used 'C.S' or even 'A.S' or 'B.S'. Antimony knows that those symbols all refer
to the same species, and will give them all the same name in subsequent output.

For convenience and style, modules may define an interface where some symbols in the module

are more easily renamed. To do this, first enclose a list of the symbols to export in parentheses

after the name of the model when defining it:

model side_reaction(S, k1)

 J0: S + E -> SE; k1*k2*S*E - k2*ES;

 S = 5;

 E = 3;

 SE = E+S;

 k1 = 1.2;

 k2 = 0.4;

end

Then when you use that module as a submodule, you can provide a list of new symbols in

parentheses:

 A: side_reaction(spec2, k2);

is equivalent to writing:

 A: side_reaction();

 A.S is spec2;

 A.k1 is k2;

One thing to be aware of when using this method: Since wrapping definitions in a defined model

is optional, all 'bare' declarations are defined to be in a default module with the name '__main'. If

there are no unwrapped definitions, '__main' will still exist, but will be empty.

As a final note: use of the 'is' keyword is not restricted to elements inside submodules. As a
result, if you wish to change the name of an element (if, for example, you want the reactions to

look simpler in Antimony, but wish to have a more descriptive name in the exported SBML),

you may use 'is' as well:

 A -> B;

 A is ABA;

 B is ABA8OH;

is equivalent to writing:

 ABA -> ABA8OH;

Module conversion factors

Occasionally, the unit system of a submodel will not match the unit system of the containing

model, for one or more model elements. In this case, you can use conversion factor constructs to

bring the submodule in line with the containing model.

If time is different in the submodel (affecting reactions, rate rules, delay, and 'time'), use the

'timeconv' keyword when declaring the submodel:

 A1: submodel(), timeconv=60;

This construct means that one unit of time in the submodel multiplied by the time conversion

factor should equal one unit of time in the parent model.

Reaction extent may also be different in the submodel when compared to the parent model, and

may be converted with the 'extentconv' keyword:

 A1: submodel(), extentconv=1000;

This construct means that one unit of reaction extent in the submodel multiplied by the extent

conversion factor should equal one unit of reaction extent in the parent model.

Both time and extent conversion factors may be numbers (as above) or they may be references to

constant parameters. They may also both be used at once:

 A1: submodel(), timeconv=tconv, extentconv=xconv;

Individual components of submodels may also be given conversion factors, when the 'is'
keyword is used. The following two constructs are equivalent ways of applying conversion factor

'cf' to the synchronized variables 'x' and 'A1.y':

 A1.y * cf is x;

 A1.y is x / cf;

When flattened, all of these conversion factors will be incorporated into the mathematics.

Submodel deletions

Sometimes, an element of a submodel has to be removed entirely for the model to make sense as

a whole. A degradation reaction might need to be removed, for example, or a now-superfluous

species. To delete an element of a submodel, use the 'delete' keyword:

 delete A1.S1;

In this case, 'S1' will be removed from submodel A1, as will any reactions S1 participated in,

plus any mathematical formulas that had 'S1' in them. Similarly, sometimes it is necessary to
clear assignments and rules to a variable. To accomplish this, simply declare a new assignment

or rule for the variable, but leave it blank:

 A1.S1 = ;

 A1.S2 := ;

 A1.S3' = ;

This will remove the appropriate initial assignment, assignment rule, or rate rule (respectively)

from the submodel.

Constant and variable symbols

Some models have 'boundary species' in their reactions, or species whose concentrations do not

change as a result of participating in a reaction. To declare that a species is a boundary species,

use the 'const' keyword:

 const S1;

While you're declaring it, you may want to be more specific by using the 'species' keyword:

 const species S1;

If a symbol appears as a participant in a reaction, Antimony will recognize that it is a species

automatically, so the use of the keyword 'species' is not required. If, however, you have a

species which never appears in a reaction, you will need to use the 'species' keyword.

If you have several species that are all constant, you may declare this all in one line:

 const species S1, S2, S3;

While species are variable by default, you may also declare them so explicitly with the 'var'
keyword:

 var species S4, S5, S6;

Alternatively, you may declare a species to be a boundary species by prepending a '$' in front of
it:

 S1 + $E -> ES;

This would set the level of 'E' to be constant. You can use this symbol in declaration lists as well:

 species S1, $S2, $S3, S4, S5, $S6;

This declares six species, three of which are variable (by default) and three of which are

constant.

Likewise, formulas are constant by default. They may be initialized with an equals sign, with

either a simple or a complex formula:

 k1 = 5;

 k2 = 2*S1;

You may also explicitly declare whether they are constant or variable:

 const k1;

 var k2;

and be more specific and declare that both are formulas:

 const formula k1;

 var formula k2;

Variables defined with an equals sign are assigned those values at the start of the simulation. In

SBML terms, they use the 'Initial Assignment' values. If the formula is to vary during the course

of the simulation, use the Assignment Rule (or Rate Rule) syntax, described later.

You can also mix-and-match your declarations however best suits what you want to convey:

 species S1, S2, S3, S4;

 formula k1, k2, k3, k4;

 const S1, S4, k1, k3;

 var S2, S3, k2, k4;

Antimony is a pure model definition language, meaning that all statements in the language serve

to build a static model of a dynamic biological system. Unlike Jarnac, sequential programming

techniques such as re-using a variable for a new purpose will not work:

 pH = 7;

 k1 = -log10(pH);

 pH = 8.2;

 k2 = -log10(pH);

In a sequential programming language, the above would result in different values being stored in

k1 and k2. (This is how Jarnac works, for those familiar with that language/simulation

environment.) In a pure model definition language like Antimony, 'pH', 'k1', 'k2', and even the

formula '-log10(pH)' are static symbols that are being defined by Antimony statements, and not
processed in any way. A simulator that requests the mathematical expression for k1 will receive

the string '-log10(pH)'; the same string it will receive for k2. A request for the mathematical
expression for pH will receive the string "8.2", since that's the last definition found in the file. As

such, k1 and k2 will end up being identical.

As a side note, we considered having libAntimony store a warning when presented with an input

file such as the example above with a later definition overwriting an earlier definition. However,

there was no way with our current interface to let the user know that a warning had been saved,

and it seemed like there could be a number of cases where the user might legitimately want to

override an earlier definition (such as when using submodules, as we'll get to in a bit). So for

now, the above is valid Antimony input that just so happens to produce exactly the same output

as:

 pH = 8.2;

 k1 = -log10(pH);

 k2 = -log10(pH);

Substance-only species

In SBML, species can be defined such that when their ID is used in math, that symbol means

either ‘the concentration of the species’ or ‘the amount of the species’. In Antimony, by default,

a species symbol is defined as meaning its concentration. However, it can be defined to mean

the amount by using the ‘substanceOnly’ keyword:

 substanceOnly species S1;

Now, whenever ‘S1’ is used in the model, it is a reference to the species amount, and not its

concentration. Defining an initial amount is still accomplished with the same syntax:

 S1 = 2.5/C1;

Compartments

A compartment is a demarcated region of space that contains species and has a particular

volume. In Antimony, you may ignore compartments altogether, and all species are assumed to

be members of a default compartment with the imaginative name 'default_compartment' with a

constant volume of 1. You may define other compartments by using the 'compartment' keyword:

 compartment comp1;

Compartments may also be variable or constant, and defined as such with 'var' and 'const':

 const compartment comp1;

 var compartment comp2;

The volume of a compartment may be set with an '=' in the same manner as species and reaction
rates:

 comp1 = 5;

 comp2 = 3*comp1;

To declare that something is in a compartment, the 'in' keyword is used, either during
declaration:

 compartment comp1 in comp2;

 const species S1 in comp2;

 S2 in comp2;

or during assignment for reactions:

 J0 in comp1: x -> y; k1*x;

 y -> z; k2*y in comp2;

or submodules:

 M0 in comp2: submod();

 submod2(y) in comp3;

or other variables:

 S1 in comp2 = 5;

Here are Antimony's rules for determining which compartment something is in:

 If the symbol has been declared to be in a compartment, it is in that compartment.

 If not, if the symbol is in a DNA strand (see the next section) which has been declared to

be in a compartment, it is in that compartment. If the symbol is in multiple DNA strands

with conflicting compartments, it is in the compartment of the last declared DNA strand

that has a declared compartment in the model.

 If not, if the symbol is a member of a reaction with a declared compartment, it is in that

compartment. If the symbol is a member of multiple reactions with conflicting
compartments, it is in the compartment of the last declared reaction that has a declared

compartment.

 If not, if the symbol is a member of a submodule with a declared compartment, it is in

that compartment. If the symbol is a member of multiple submodules with conflicting

compartments, it is in the compartment of the last declared submodule that has a declared

compartment.

 If not, the symbol is in the compartment 'default_compartment', and is treated as
having no declared compartment for the purposes of determining the compartments of

other symbols.

Note that declaring that one compartment is 'in' a second compartment does not change the
compartment of the symbols in the first compartment:

 compartment c1, c2;

 species s1 in c1, s2 in c1;

 c1 in c2;

yields:

symbol compartment

s1 c1

s2 c1

c1 c2

c2 default_compartment

Compartments may not be circular: "c1 in c2; c2 in c3; c3 in c1" is illegal.

Events

Events are discontinuities in model simulations that change the definitions of one or more

symbols at the moment when certain conditions apply. The condition is expressed as a boolean

formula, and the definition changes are expressed as assignments, using the keyword 'at' and the
following syntax:

 at: variable1=formula1, variable2=formula2 [etc];

such as:
 at (x>5): y=3, x=r+2;

You may also give the event a name by prepending it with a colon:

 E1: at(x>=5): y=3, x=r+2;

(you may also claim an event is 'in' a compartment just like everything else ('E1 in comp1:').
This declaration will never change the compartment of anything else.)

In addition, there are a number of concepts in SBML events that can now be encoded in

Antimony. If event assignments are to occur after a delay, this can be encoded by using the

'after' keyword:

 E1: at 2 after (x>5): y=3, x=r+2;

This means to wait two time units after x transitions from less than five to more than five, then

change y to 3 and x to r+2. The delay may also itself be a formula:

 E1: at 2*z/y after (x>5): y=3, x=r+2;

For delayed events (and to a certain extent with simultaneous events, discussed below), one

needs to know what values to use when performing event assignments: the values from the time

the event was triggered, or the values from the time the event assignments are being executed?

By default (in Antimony, as in SBML Level 2) the first holds true: event assignments are to use

values from the moment the event is triggered. To change this, the keyword 'fromTrigger' is
used:

 E1: at 2*z/y after (x>5), fromTrigger=false: y=3, x=r+2;

You may also declare 'fromTrigger=true' to explicitly declare what is the default.

New complications can arise when event assignments from multiple events are to execute at the

same time: which event assignments are to be executed first? By default, there is no defined

answer to this question: as long as both sets of assignments are executed, either may be executed

first. However, if the model depends on a particular order of execution, events may be given

priorities, using the priority keyword:

 E1: at ((x>5) && (z5) && (q>7)), priority=0: y=5: x=r+6;

In situations where z7, and x

Another question is whether, if at the beginning of the simulation the trigger condition is 'true',
it should be considered to have just transitioned to being true or not. The default is no, meaning

that no event may trigger at time 0. You may override this default by using the 't0' keyword:

 E1: at (x>5)), t0=false: y=3, x=r+2;

In this situation, the value at t0 is considered to be false, meaning it can immediately transition to

true if x is greater than 5, triggering the event. You may explicitly state the default by using 't0

= true'.

Finally, a different class of events is often modeled in some situations where the trigger

condition must persist in being true from the entire time between when the event is triggered to

when it is executed. By default, this is not the case for Antimony events, and, once triggered, all

events will execute. To change the class of your event, use the keyword 'persistent':

 E1: at 3 after (x>5)), persistent=true: y=3, x=r+2;

For this model, x must be greater than 5 for three seconds before executing its event

assignments: if x dips below 5 during that time, the event will not fire. To explicitly declare the

default situation, use 'persistent=false'.

The ability to change the default priority, t0, and persistent characteristics of events was

introduced in SBML Level 3, so if you translate your model to SBML Level 2, it will lose the

ability to define functionality other than the default. For more details about the interpretation of

these event classifications, see the SBML Level 3 specification.

Assignment Rules

In some models, species and/or variables change in a manner not described by a reaction. When

a variable receives a new value at every point in the model, this can be expressed in an

assignment rule, which in Antimony is formulated with a ':=' as:

 Ptot := P1 + P2 + PE;

In this example, 'Ptot' will continually be updated to reflect the total amount of 'P' present in the
model.

Each symbol (species or formula) may have only one assignment rule associated with it. If an

Antimony file defines more than one rule, only the last will be saved.

When species are used as the target of an assignment rule, they are defined to be 'boundary

species' and thus 'const'. Antimony doesn't have a separate syntax for boundary species whose
concentrations never change vs. boundary species whose concentrations change due to

assignment rules (or rate rules, below). SBML distinguishes between boundary species that may

change and boundary species that may not, but in Antimony, all boundary species may change as

the result of being in an Assignment Rule or Rate Rule.

Rate Rules

Rate rules define the change in a symbol's value over time instead of defining its new value. In

this sense, they are similar to reaction rate kinetics, but without an explicit stoichiometry of

change. These may be modeled in Antimony by appending an apostrophe to the name of the

symbol, and using an equals sign to define the rate:

 S1' = V1*(1 - S1)/(K1 + (1 - S1)) - V2*S1/(K2 + S1)

Note that unlike initializations and assignment rules, formulas in rate rules may be self-

referential, either directly or indirectly.

Any symbol may have only one rate rule or assignment rule associated with it. Should it find

more than one, only the last will be saved.

Display Names

When some tools visualize models, they make a distinction between the 'id' of an element, which
must be unique to the model and which must conform to certain naming conventions, and the

'name' of an element, which does not have to be unique and which has much less stringent

naming requirements. In Antimony, it is the id of elements which is used everywhere. However,

you may also set the 'display name' of an element by using the 'is' keyword and putting the name
in quotes:

 A.k1 is "reaction rate k1";

 S34 is "Ethyl Alcohol";

Comments

Comments in Antimony can be made on one line with //[comments], or on multiple lines with

/* [comments] */. You may also use python-style comments with #[comments].

 /* The following initializations were

 taken from the literature */

 X=3; //Taken from Galdziki, et al.

 Y=4; //Taken from Rutherford, et al.

 Z=5; # A python comment.

Comments are not translated to SBML or CellML, and will be lost if round-tripped through those

languages.

Units

As of version 2.4 of Antimony, units may now be created and translated to SBML (but not

CellML, yet). Units may be created by using the 'unit' keyword:

 unit substance = 1e-6 mole;

 unit hour = 3600 seconds;

Adding an 's' to the end of a unit name to make it plural is fine when defining a unit: '3600

second' is the same as '3600 seconds'. Compound units may be created by using formulas with

'*', '/', and '^'. However, you must use base units when doing so ('base units' defined as those
listed in Table 2 of the SBML Level 3 Version 1 specification, which mostly are SI and SI-

derived units).

 unit micromole = 10e-6 mole / liter;

 unit daily_feeding = 1 item / 86400 seconds

 unit voltage = 1000 grams * meters^2 / seconds^-3 * ampere^-1

You may use units when defining formulas using the same syntax as above: any number may be

given a unit by writing the name of the unit after the number. When defining a symbol (of any

numerical type: species, parameter, compartment, etc.), you can either use the same technique to

give it an initial value and a unit, or you may just define its units by using the 'has' keyword:

 unit foo = 100 mole/5 liter;

 x = 40 foo/3 seconds; //'40' now has units of 'foo' and '3' units of

'seconds'.

 y = 3.3 foo; // 'y' is given units of 'foo' and an initial value of

'3.3'.

 z has foo; // 'z' is given units of 'foo'.

Antimony does not calculate any derived units: in the above example, 'x' is fully defined in terms

of moles per liter per second, but it is not annotated as such.

As with many things in Antimony, you may use a unit before defining it: 'x = 10 ml' will create

a parameter x and a unit 'ml'.

DNA Strands

A new concept in Antimony that has not been modeled explicitly in previous model definition

languages such as SBML is the idea of having DNA strands where downstream elements can

inherit reaction rates from upstream elements. DNA strands are declared by connecting symbols

with '--':

 --P1--G1--stop--P2--G2--

You can also give the strand a name:

 dna1: --P1--G1--

By default, the reaction rate or formula associated with an element of a DNA strand is equal to

the reaction rate or formula of the element upstream of it in the strand. Thus, if P1 is a promoter

and G1 is a gene, in the model:

 dna1: --P1--G1--

 P1 = S1*k;

 G1: -> prot1;

the reaction rate of G1 will be "S1*k".

It is also possible to modulate the inherited reaction rate. To do this, we use ellipses ('...') as

shorthand for 'the formula for the element upstream of me'. Let's add a ribosome binding site that

increases the rate of production of protein by a factor of three, and say that the promoter actually

increases the rate of protein production by S1*k instead of setting it to S1*k:

 dna1: --P1--RBS1--G1--

 P1 = S1*k + ...;

 RBS1 = ...*3;

 G1: -> prot1;

Since in this model, nothing is upstream of P1, the upstream rate is set to zero, so the final

reaction rate of G1 is equal to "(S1*k + 0)*3".

Valid elements of DNA strands include formulas (operators), reactions (genes), and other DNA

strands. Let's wrap our model so far in a submodule, and then use the strand in a new strand:

model strand1()

 dna1: --P1--RBS1--G1--

 P1 = S1*k + ...;

 RBS1 = ...*3;

 G1: -> prot1;

end

model fullstrand()

 A: strand1();

 fulldna: P2--A.dna1

 P2 = S2*k2;

end

In the model 'fullstrand', the reaction that produces A.prot1 is equal to
"((A.S1*A.k+(S2*k2))*3)".

Operators and genes may be duplicated and appear in multiple strands:

 dna1: --P1--RBS1--G1--

 dna2: P2--dna1

 dna3: P2--RBS2--G1

Strands, however, count as unique constructs, and may only appear as singletons or within a

single other strand (and may not, of course, exist in a loop, being contained in a strand that it

itself contains).

If the reaction rate or formula for any duplicated symbol is left at the default or if it contains

ellipses explicitly ('...'), it will be equal to the sum of all reaction rates in all the strands in which

it appears. If we further define our above model:

 dna1: --P1--RBS1--G1--

 dna2: P2--dna1

 dna3: P2--RBS2--G1

 P1 = ...+0.3;

 P2 = ...+1.2;

 RBS1 = ...*0.8;

 RBS2 = ...*1.1;

 G1: -> prot1;

The reaction rate for the production of 'prot1' will be equal to "(((0+1.2)+0.3)*0.8) +
(((0+1.2)*1.1))". If you set the reaction rate of G1 without using an ellipsis, but include it in

multiple strands, its reaction rate will be a multiple of the number of strands it is a part of. For

example, if you set the reaction rate of G1 above to "k1*S1", and include it in two strands, the

net reaction rate will be "k1*S1 + k1*S1".

The purpose of prepending or postfixing a '--' to a strand is to declare that the strand in question
is designed to have DNA attached to it at that end. If exactly one DNA strand is defined with an

upstream '--' in its definition in a submodule, the name of that module may be used as a proxy
for that strand when creating attaching something upstream of it, and visa versa with a defined

downstream '--' in its definition:

model twostrands

 --P1--RBS1--G1

 P2--RBS2--G2--

end

model long

 A: twostrands();

 P3--A

 A--G3

end

The module 'long' will have two strands: "P3--A.P1--A.RBS1--A.G1" and "A.P2--A.RBS2--
A.G2--G3".

Submodule strands intended to be used in the middle of other strands should be defined with '--'
both upstream and downstream of the strand in question:

model oneexported

 --P1--RBS1--G1--

 P2--RBS2--G2

end

model full

 A: oneexported()

 P2--A--stop

end

If multiple strands are defined with upstream or downstream "--" marks, it is illegal to use the

name of the module containing them as proxy.

Interactions

Some species act as activators or repressors of reactions that they do not actively participate in.

Typical models do not bother mentioning this explicitly, as it will show up in the reaction rates.

However, for visualization purposes and/or for cases where the reaction rates might not be

known explicitly, you may declare these interactions using the same format as reactions, using

different symbols instead of " >": for activations, use "-o"; for inhibitions, use "-|", and for

unknown interactions or for interactions which sometimes activate and sometimes inhibit, use

"-(":

 J0: S1 + E -> SE;

 i1: S2 -| J0;

 i2: S3 -o J0;

 i3: S4 -(J0;

If a reaction rate is given for the reaction in question, that reaction must include the species listed

as interacting with that reaction. This, then, is legal:

 J0: S1 + E -> SE; k1*S1*E/S2

 i1: S2 -| J0;

because the species S2 is present in the formula "k1*S1*E/S2". If the concentration of an

inhibitory species increases, it should decrease the reaction rate of the reaction it inhibits, and

vice versa for activating species. The current version of libAntimony (v2.4) does not check this,

but future versions may add the check.

When the reaction rate is not known, species from interactions will be added to the SBML

'listOfModifiers' for the reaction in question. Normally, the kinetic law is parsed by libAntimony

and any species there are added to the list of modifiers automatically, but if there is no kinetic

law to parse, this is how to add species to that list.

Function Definitions

You may create user-defined functions in a similar fashion to the way you create modules, and

then use these functions in Antimony equations. These functions must be basic single equations,

and act in a similar manner to macro expansions. As an example, you might define the quadratic

equation and use it in a later equation as follows:

function quadratic(x, a, b, c)

 a*x^2 + b*x + c

end

model quad1

 S3 = quadratic(s1, k1, k2, k3);

end

This effectively defines S3 to have the equation "k1*s1^2 + k2*s1 + k3".

In addition, there are several built-in functions defined in Antimony. All of the functions present

in the MathML subset used in SBML Level 3 are likewise defined here, and include:

abs, and, arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, arctan,

arctanh, ceiling, cos, cosh, cot, coth, csc, csch, divide, eq, exp, factorial, floor, geq, gt, leq, ln,

log, lt, minus, neq, not, or, piecewise, plus, power, root, sec, sech, sin, sinh, tan, tanh, times, and

xor. In addition, the constants true, false, notanumber, pi, avogadro, infinity, and exponentiale

are all allowed.

As of Antimony v2.6, the following distributions are also allowed, and will be added to the

translated SBML file if used: normal(mean, stddev), truncatedNormal(mean, stddev, min, max),

uniform(min, max), exponential(rate), truncatedExponential(rate, min, max), gamma(shape,

scale), truncatedGamma(shape, scale, min, max), poisson(rate), and truncatedPoisson(rate, min,

max). The ‘truncated’ forms of all functions allow one to define inclusive boundaries, meaning

that the returned value must fall between the min and the max values given.

Flux Balance Constraints

In some models, reaction rates are not known specifically, but one can place certain constraints

on those reactions, and then apply an objective function (such as ‘maximize growth’) to try to

discern a likely set of reaction rates. In SBML, the package that lets you define these constraints

and objective functions is known as the ‘Flux Balance Constraints’ package. As of v2.8.0 of

Antimony, these constraints can now be defined in Antimony as well, using equalities and

inequalities ‘<’, ‘>’, ‘<=’, ‘>=’, and ‘==’. If we assume that all ‘J’ variables are reactions, the

following definitions are all Flux Balance constraints:

0 <= J0

J1 <= 1000

-10 <= J2 <= 10

Constraints that do not involve the ID of a reaction by itself will be translated as core SBML

constraints. (Flux Balance constraints are also translated as core constraints, for consistency.)

The objective function is defined using either the keyword ‘maximize’ or ‘minimize’. It may be

named by prepending the statement with that name, followed by a colon:

maximize J1

obj1: minimize J2

Other files

More than one file may be used to define a set of modules in Antimony through the use of the

'import' keyword. At any point in the file outside of a module definition, use the word 'import'
followed by the name of the file in quotation marks, and Antimony will include the modules

defined in that file as if they had been cut and pasted into your file at that point. SBML files may

also be included in this way:

import "models1.txt"

import "oscli.xml"

model mod2()

 A: mod1();

 B: oscli();

end

In this example, the file 'models1.txt' is an Antimony file that defines the module 'mod1', and

the file 'oscli.xml' is an SBML file that defines a model named 'oscli'. The Antimony module

'mod2' may then use modules from either or both of the other imported files.

Remember that imported files act like they were cut and pasted into the main file. As such, any

bare declarations in the main file and in the imported files will all contribute to the default

'__main' module. Most SBML files will not contribute to this module, unless the name of the

model in the file is '__main' (for example, if it was created by the antimony converter).

By default, libantimony will examine the 'import' text to determine whether it is a relative or
absolute filename, and, if relative, will prepend the directory of the working file to the import

text before attempting to load the file. If it cannot find it there, it is possible to tell the

libantimony API to look in different directories for files loaded from import statements.

However, if the working directory contains a '.antimony' file, or if one of the named directories

contains a '.antimony' file, import statements can be subverted. Each line of this file must
contain three tab-delimited strings: the name of the file which contains an import statement, the

text of the import statement, and the filename where the program should look for the file. Thus,

if a file "file1.txt" contains the line 'import "file2.txt"', and a .antimony file is discovered
with the line:

file1.txt file2.txt antimony/import/file2.txt

the library will attempt to load 'antimony/import/file2.txt' instead of looking for

'file2.txt' directly. For creating files in-memory or when reading antimony models from
strings, the first string may either be left out, or you may use the keyword "<MAIN>":

 file2.txt antimony/import/file2.txt

The first and third entries may be relative filenames: the directory of the .antimony file itself will

be added internally when determining the file's actual location. The second entry must be exactly

as it appears in the first file's 'import' directive, between the quotation marks.

Importing and Exporting Antimony Models

Once you have created an Antimony file, you can convert it to SBML or CellML using

'sbtranslate' or the 'QTAntimony' visual editor (both available from

http://antimony.sourceforge.net/) This will convert each of the models defined in the Antimony

text file into a separate SBML model, including the overall '__main' module (if it contains
anything). These files can then be used for simulation or visualization in other programs.

QTAntimony can be used to edit and translate Antimony, SBML, and CellML models. Any file

in those three formats can be opened, and from the 'View' menu, you can turn on or off the

SBML and CellML tabs. Select the tabs to translate and view the working model in those

different formats.

The SBML tabs can additionally be configured to use the 'Hierarchical Model Composition'

package constructs. Select 'Edit/Flatten SBML tab(s)' or hit control-F to toggle between this

version and the old 'flattened' version of SBML. (To enable this feature if you compile Antimony

yourself, you will need the latest versions of libSBML with the SBML 'comp' package enabled,

and to select 'WITH_COMP_SBML' from the CMake menu.)

As there were now several different file formats available for translation, the old command-line

translators still exist (antimony2sbml; sbml2antimony), but have been supplanted by the new

'sbtranslate' executable. Instructions for use are available by running sbtranslate from the

command line, but in brief: any number of files to translate may be added to the command line,

and the desired output format is given with the '-o' flag: '-o antimony', '-o sbml', '-o cellml',

or '-o sbml-comp' (the last to output files with the SBML 'comp' package constructs). Examples:

 sbtranslate.exe model1.txt model2.txt -o sbml

will create one flattened SBML file for the main model in the two Antimony files in the working

directory. Each file will be of the format "[prefix].xml", where [prefix] is the original filename

with '.txt' removed (if present).

 sbtranslate.exe oscli.xml ffn.xml -o antimony

will output two files in the working directory: 'oscli.txt' and 'ffn.txt' (in the antimony
format).

http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Hierarchical_Model_Composition

 sbtranslate.exe model1.txt -o sbml-comp

will output 'model1.xml' in the working directory, containing all models in the 'model1.txt' file,

using the SBML 'comp' package.

Appendix: Converting between SBML and Antimony

For reference, here are some of the differences you will see when converting models between

SBML and Antimony:

 Local parameters in SBML reactions become global parameters in Antimony, with the

reaction name prepended. If a different symbol already has the new name, a number is

appended to the variable name so it will be unique. These do not get converted back to

local parameters when converting Antimony back to SBML.

 Algebraic rules in SBML disappear in Antimony.

 Any element with both a value (or an initial amount/concentration for species) and an

initial assignment in SBML will have only the initial assignment in Antimony.

 Stoichiometry math in SBML disappears in Antimony.

 All 'constant=true' species in SBML are set 'const' in Antimony, even if that same
species is set boundary=false.

 All 'boundary=true' species in SBML are set 'const' in Antimony, even if that same
species is set constant=false.

 Boundary ('const') species in Antimony are set boundary=true and constant=false in

SBML.

 Variable ('var') species in Antimony are set boundary=false and constant=false in SBML.

 Modules in Antimony are flattened in SBML (unless you use the 'comp' option).
 DNA strands in Antimony disappear in SBML.

 DNA elements in Antimony no longer retain the ellipses syntax in SBML, but the

effective reaction rates and assignment rules should be accurate, even for elements

appearing in multiple DNA strands. These reaction rates and assignment rules will be the

sum of the rate at all duplicate elements within the DNA strands.

 Any symbol with the MathML csymbol 'time' in SBML becomes 'time' in Antimony.

 Any formula with the symbol 'time' in it in Antimony will become the MathML csymbol

'time' in in SBML.

 The MathML csymbol 'delay' in SBML disappears in Antimony.

 Any SBML version 2 level 1 function with the MathML csymbol 'time' in it will become

a local variable with the name 'time_ref' in Antimony. This 'time_ref' is added to the
function's interface (as the last in the list of symbols), and any uses of the function are

modified to use 'time' in the call. In other words, a function "function(x, y): x+y*time"
becomes "function(x, y, time_ref): x + y*time_ref", and formulas that use "function(A,

B)" become "function(A, B, time)"

 A variety of Antimony keywords, if found in SBML models as IDs, are renamed to add

an appended '_'. So the ID 'compartment' becomes 'compartment_', 'model' becomes

'model_', etc.

